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An efficient implementation of the forward-backward least-mean-square

(FBLMS) adaptive line enhancer is presented in this article. Without changing the

characteristics of the FBLMS adaptive line enhancer, the proposed implementation

technique reduces multiplications by 25 percent and additions by 12.5 percent in two

successive time samples in comparison with those operations of direct implemen-
tation in both prediction and weight control. The proposed FBLMS architecture

and algorithm can be applied to digital receivers for enhancing signal-to-noise ratio

to allow fast carrier acquisition and tracking in both stationary and nonstationary
environments.

I. Introduction

Adaptive line enhancers (ALEs) are useful in many areas, including time-domain spectral estimation

for fast carrier acquisition [2-4]. For example, a fast carrier acquisition technique [2], 1 as shown in Fig. 1,

will be very useful for a deep-space mission, especially in a nonstationary environment or emergencies.
Figure 1 is the block diagram of an ALE in a digital receiver used for both acquisition and tracking. First,

the receiver is in the acquisition mode. Second, when the uplink carrier is acquired as indicated by the lock

detector, the switch is shifted to the tracking position and the tracking process takes over immediately.

With this acquisition scheme, the uplink carrier can be acquired by a transponder in seconds (as opposed

to minutes for the Cassini transponder). Although devised to support a space mission, the architecture of

the forward-backward least-mean-square (FBLMS) ALE and the associated algorithm proposed in this

article are also applicable to other systems, including fixed-ground and mobile communication systems.

Note that this proposed ALE scheme in the receiver needs a residual carrier, and does not work directly
in suppressed-carrier cases.

A conventional ALE system using a least-mean-square (LMS) algorithm is depicted in Fig. 2, where

z -1 represents a delay. The analysis of the ALE for enhancing the signal-to-noise ratio (SNR) to allow
fast acquisition is given in [2]. The block diagram of a FBLMS adaptive line enhancer is shown in Fig. 3.

The performance analysis of the FBLMS adaptive line enhancer is provided in [1]. The FBLMS adaptive

line enhancer algorithm enjoys approximately half the misadjustment of that of the LMS algorithm [1].

1T. M. Nguyen, H. G. Yeh, and L. V. Lam, "A New Carrier Frequency Acquisition Technique for Future Digital Transpon-
ders," to be published in a future issue of The Telecommunications and Data Acquisition Progress Report.
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e_(n) = x(n) - Xr(n)W(_)

eb(n) = x(n -- N) - XT(n)W(n)

where the superscript T denotes the transpose of a vector, and

XT(n) = [x(n-- 1),x(n-- 2),'",x(n-- N)]

XT(n) = [x(n-- N+ 1),x(n- Y + 2),...,x(n)]

WT(n) = [wl(n), w2(n),..., wN(n)l

In any gradient algorithm, the coefficient vector W(n) is updated using

w(_ + 1) = w(_) - _(7{e(_)_}

(la)

(lb)

(lc)

(ld)

(le)

(2a)

where # is the adaptive step size and the _7{e(n) 2} is the estimated gradient of the surface of E{e(n)2}.

Note that E(.} denotes the expected value. In the forward-backward algorithm, e(n) 2 = el(n) 2 + eb(n) 2,

and the gradient estimate is chosen as

_7{e(n) 2} = -[el(n)X(n ) + eb(n)Xb(n)] (2b)

It is shown in [1] that Eq. (2b) is an unbiased estimator of the gradient. This leads to the coefficient

update

W(n + 1) = W(n) + #[el(n)X(n ) + eb(n)Xb(n)] (2c)

This means that W(n + 1) =_W(n) in steady state when both forward and backward errors are approach-

ing zero.

III. The Fast Forward-Backward LMS Algorithm

The fast FBLMS algorithm is derived in this section by using the radix-2 algorithm on time samples.

Both predictor and weight update sections are provided in detail.

A. Predictor Section

We consider the computation of two successive predictions in both forward and backward directions

with the fixed weight coefficient W(n - 1). After regrouping even and odd terms, the forward predictor

is obtained [5] and given in Eq. (3):

] 1 [AT[w0]-ely(n- 1) -XT(n-- 1) W(n 1)

dl(n ) XT(n) J C T AT n Wl n-I

(3a)

where
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A T = [x(n- 2),x(n- 4), ...,x(n- N + 2),x(n- N)]

B T = [x(n- 3),x(n- 5), ..-,x(n- N + 1),x(n- N- 1)]

C T = [z(n- 1),x(n- 3), .-.,x(u- N + 3),z(n- Y + 1)]

W0 = [wo(n- 1),w2(n- 1),...,wg-2(n-- 1)]T

Wl = [wl(n - 1),w3(n - 1),-.',WN-l(n -- 1)] T

(3b)

(3c)

(3d)

(3e)

(3f)

Similarly, the backward predictor is obtained and given as follows:

L &(n) j L XT(n) J GT
[wo]

H T W 1
n n--1

(4a)

where

F T = Ix(n- N),x(n- N + 2), ..-,x(n- 4),x(n- 2)]

G T = [x(n- N + 1),x(n- N + 3), ...,x(n- 3),x(n- 1)1

n T = Ix(n- N + 2),z(n- N + 4),...,x(n- 2),x(n)]

(4b)

(4c)

(4d)

Equations (3a) and (4a) are approximations by virtue of updating the weight vector only once every two

cycles. The relationship between the two sequence sets {A, B, C} and {F, G, H} is given as follows:

F = A,- (5)

G = (6)

z-lH = Ar (7)

where subscript r means the reversed order of the sequence and the z- 1 means one delay unit of the cor-

responding sequence and is equivalent to two time sample delays. Furthermore, we observe the following

relationships between G, B, C:

z-lG =B_ (8)

z-lC --B (9)

After performing the appropriate computation, Eq. (4a) can be rewritten as follows:
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db(n-1)l = F GT(Wo + WI) + (F--G)TWo
rib(n) J LGT(W0 + Wl) - (G - H)Twl

(10)

The computation of Eq. (4a) requires two inner products of length N, while that of Eq. (10) requires

only three inner products of length N/2 and N/2 additions to perform W0 +Wl. Similarly, by combining

Eqs. (5) through (9), Eq. (3a) can be rewritten as follows:

"df(n-1)l = IAT(W0+W1)+(B-A) TWI]dr(n) LAT(W0+ Wl) - (A - c)Tw0J

I AT(Wo + wl) "_- z-I(G -- H)TWll

/ JL AT(w0 +Wl) - (F- G)Tw0

(11)

Clearly, the sequences (G -H) and (F - G) of Eq. (10) are reused again in Eq. (11), but in reverse order.

The computation of Eq. (11) requires only three inner products of length N/2. The total number of

multiplications and additions required in both forward and backward predictor sections for two successive

computations is about 3N and 3.5N, respectively. The total number of multiplications and additions

required in Eqs. (la) and (lb) for two successive prediction sections is 4N and 4(N - 1). Consequently,

there are about 25 percent and 12.5 percent savings in multiplications and additions, respectively.

B. Weight Update Section

We consider the weight coefficient updates now. Since weights are explicitly computed at every other

time update using the look-ahead approach [6], the weight update of Eq. (2c) can be rewritten as follows:

W(n+l) =W(n--1)+p[ef(n--1)X(n--1)+eb(n-1)Xb(n-1)]+P[ey(n)X(n)+eb(n)Xb(n)]

[ #el(n) ] #eb(n) ]= W(n- 1) + [X(n) X(n - 1)1 + [Xb(n) Xb(n - 1)] (12)
L_e1(_- 1) _eb(n- 1)j

By combining Eqs. (5) through (9), Eq. (12) is rewritten as follows:

[W0] = [W0] -F [C :] [ per(n)] [G_t_ :] [ #eb(n) 1
Wl n+l Wl n-1 #gf(n -- 1)J H #eb(n- 1)J

I A(ef(n) + el(n- 1)) - (F - G)ref(n) ]
+ _ LA(ei(n) + ef(n - 1)) + z-l(G H)rel(n - 1)

+ # [G(eb(n) +eb(n-1)) + (F-G)eb(n-1) 1

L G(eb(n) + eb(n-- 1)) -- (G-- H)eb(n) J

(13)
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The vectors (F - G) and (G - H) are once more employed in Eq. (13). Notice that the term/z[A(eI(n )

+ e:(n - 1)) + G(eb(n) + eb(n -- 1))] is computed only once, and the sum is applied to both W0 and
Wl for updates. The total numbers of multiplications and additions in Eq. (13) are about 3N and 3.5N,

respectively. However, the total numbers of multiplications and additions of Eq. (2c) for two adaptations

are 4N and 4(N - 1). Consequently, 25 percent of multiplications and 12.5 percent of additions are saved

by using Eq. (13) in comparison with those operations of Eq. (2c).

IV. Implementation

The architecture of the fast FBLMS algorithm is depicted in Fig. 4. A switching circuit is employed

after the adaptive line enhancer, and the switch rate (from C to A or from A to C) is the same as

the sampling rate. The switching circuit is switched between points C and A alternately. Sequences

C and A are generated at a rate of 1/(2T) accordingly. The sequence B is a delayed version of the

sequence C. By using a radix-2 structure, sequences {B - A} and {A - C} are then generated at the

upper and lower lag, respectively. By using the sequence {B - A}, inner products (B - A)Tw1 and

z-1 (G -H)Twl are generated at the upper and lower lag, respectively, of the upper forward-backward

tapped-delay-line structure. Similarly, by using the sequence {A - C}, inner products (A - c)Tw0 and

(F-G)Tw0 are generated at the upper and lower lag, respectively, of the lower forward-backward tapped-

delay-line structure. Note that vectors F, G, and H are defined in Eqs. (5), (6), and (7), respectively.

Inner products of AT(Wo 4- Wl) and GT(w0 4- Wl) are computed at the top and bottom portions,

respectively, of the fast FBLMS architecture. Finally, forward errors {e/(n) and e/(n - 1)} and backward

errors (eb(n - 1) and eb(n -- 2)} are computed at the right-hand side of Fig. 4. In order to subtract the

term of z-l(G - H)Tw1 and form the backward error, a delay unit is applied to the output branch of

the inner product of GT(w0 4- Wl). Consequently, the corresponding backward error is delayed from

eb(n) to eb(n -- 2). Notice that this radix-2 structure concept can be applied again to the upper and lower

forward-backward taped-delay-line portion of the fast FBLMS algorithm to further reduce the number

of multiplications and additions.

Although the fast FBLMS architecture shown in Fig. 4 appears more complex than the FBLMS

shown in Fig. 3, the structure is still very simple. In fact, the fast FBLMS architecture consists of

radix-2, forward LMS, and FBLMS structures. The increased data flow complexity over the FBLMS

algorithm is limited; therefore, the fast FBLMS algorithm can be easily implemented with digital signal

processors.

V. Simulation Results

An adaptive line enhancer with 6-weight (N = 6) is chosen as an example. The input signal is a sinusoid
of frequency f0 contaminated by white noise. Computer simulations are conducted for the misadjustment

calculation by using forward LMS, FBLMS, and fast FBLMS algorithms. The misadjustment [1] is

computed after convergence as follows:

where

M =

extra output power due to weight jittering

minimum output power

E[A(n)T ¢(x, x)A(n)]

E[e(n)2]op,
(14)
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a(n) =w(n) -Wopt (15)

¢(x, x) = E[X(n)XT(n)] (16)

E[e(n)2]opt = E[x(n) 2] - wToptE[x(n)X(n)] (17)

Table 1 shows the measured misadjustments for various values of SNR at step size p = 2 -s. Apparently,

the excess error power for both the FBLMS and the fast FBLMS algorithms is approximately half that of

the forward LMS algorithm at the 10-dB SNR. The improvement of the misadjustment by using both the

FBLMS and the fast FBLMS algorithms over that of the forward LMS algorithm is limited at an SNR

around 0 dB. However, the misadjustment of the fast FBLMS algorithm is about the same as that of

the FBLMS algorithm. Furthermore, it is observed in Table 1 that, at a higher SNR, the misadjustment

increases (for a given step size # = 2-s). This is because the minimum output error power decreases

much more rapidly than the extra output power due to weight jittering, as depicted by Eq. (14). This

high misadjustment is significantly reduced when the step size p is cut to 2 -l°, as shown in Table 2.

Table 2 shows the measured misadjustments for various values of the step size and the frequency f0 at

SNR --- 10 dB. Apparently, the excess error power for both the FBLMS and the fast FBLMS algorithms

is approximately half that of the forward LMS algorithm at the step size # = 2 -s and # = 2 -1°.

The misadjustment is much reduced when the step size is small (2 -1°) by using any one of the three

algorithms. Again, the misadjustment of the fast FBLMS algorithm is about the same as that of the

FBLMS. The E[e(n)2]opt used to derive the misadjustment is computed by using 500 samples in each run.

The misadjustment results listed in Tables 1 and 2 were obtained by averaging 100 runs of the excess

error power curves after convergence had been achieved.

Table 1. A comparison betweenthe mlaadjuatment powers of
three algorithmsat/_ = 2-8.

SNR fo

Percent misadjust ment

Forward LMS FBLMS Fast FBLMS

0 0.1 3.04 2.75 2.75

3 0.1 3.74 2,84 2.93

10 0.1 32.50 13.77 16.95

Table2. A comparison between the miead]ustment powers of three
algorithms usingfixed SNR = 10 dB with different/_.

Percent misadjustment

Forward LMS FBLMS Fast FBLMS

2 -s 0.1667 31.34 14.47 16.03

2 -8 0.1 32.5 13.77 16.95

2-10 0.1667 3.06 2.05 1.99

2 -1° 0.1 2.33 1.24 1.30
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Fig. 5. A typical excess error power versus n plot by using the (a) forward LMS, (b) FBLMS, (c) fast FBLMS
algorithm, and (d) the steady-state comparison.

Figures 5(a), (b), and (c) show a typical excess error power versus n plot at f0 = 1/6, step size = 2 -s,

and SNR = 10 dB for the forward LMS, FBLMS, and fast FBLMS algorithms, respectively. Figure 5(d)

shows the excess error power at the steady state. It is clear that the performance of the fast FBLMS

algorithm is about the same as that of the FBLMS algorithm.

VI. Conclusion

The fast forward backward LMS algorithm presented in this article shows that the number of arith-

metic operations in [1] can be reduced without degrading performance. In the forward-backward predictor

section, 25 percent of multiplications and 12.5 percent of additions are saved in each of two successive

operations. Similarly, in the weight control section, 25 percent of multiplications and 12.5 percent of

additions are saved in each of two adaptations. Simulation results indicate that improvements in misad-

justment for both the FBLMS and the fast FBLMS algorithms over the conventional LMS algorithm are

about 50 percent at a high SNR. When the SNR is low, the misadjustment improvement for both the

FBLMS and the fast FBLMS algorithms over the conventional LMS algorithm is less than 50 percent.

Notice that this fast forward-backward LMS algorithm is well suited for implementation on application-

specific integrated circuits and digital signal processors. This implementation method can be generalized

by using higher than two steps of look-ahead. Further computational savings are possible with limited cost

on controlling appropriate data flow. This fast FBLMS adaptive line enhancer can be easily integrated

together with either a conventional voltage-controlled oscillator in a closed loop for acquisition/tracking,

as used in the present deep-space transponder, or a numerically controlled oscillator in an open-loop

scheme for acquiring and tracking the carrier signal, as will be used in future deep-space transponders.
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